A Simple Solution to Bayesian Mixture Labeling
نویسنده
چکیده
The label switching problem is one of the fundamental problems in Bayesian mixture analysis. Using all the Markov chain Monte Carlo samples as the initials for the EM algorithm, we propose to label the samples based on the modes they converge to. Our method is based on the assumption that the samples converged to the same mode have the same labels. If a relative noninformative prior is used or the sample size is large, the posterior will be close to the likelihood and then the posterior modes can be located approximately by the EM algorithm for mixture likelihood, without assuming the availability of the closed form of the posterior. In order to speed up the computation of this labeling method, we also propose to first cluster the samples by K-means with large number of clusters K. Then, by assuming that the samples within each cluster have the same labels, we only need to find one converged mode for each cluster. Using a Monte Carlo simulation study and a real data set, we demonstrate the success of our new method in dealing with the label switching problem.
منابع مشابه
Speech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering
Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...
متن کاملA Bayesian mixture model for classification of certain and uncertain data
There are different types of classification methods for classifying the certain data. All the time the value of the variables is not certain and they may belong to the interval that is called uncertain data. In recent years, by assuming the distribution of the uncertain data is normal, there are several estimation for the mean and variance of this distribution. In this paper, we co...
متن کاملVariational Bayesian Dirichlet-Multinomial Allocation for Exponential Family Mixtures
We study a Bayesian framework for density modeling with mixture of exponential family distributions. Our contributions: •A variational Bayesian solution for finite mixture models • Show that finite mixture models (with a Bayesian setting) can determine the mixture number automatically • Justify this result with connections to Dirichlet Process mixture models •A fast variational Bayesian solutio...
متن کاملA two-component Bayesian mixture model to identify implausible gestational age
Background: Birth weight and gestational age are two important variables in obstetric research. The primary measure of gestational age is based on a mother’s recall of her last menstrual period. This recall may cause random or systematic errors. Therefore, the objective of this study is to utilize Bayesian mixture model in order to identify implausible gestational age. Methods: ...
متن کاملModel based labeling for mixture models
Label switching is one of the fundamental problems for Bayesian mixture model analysis. Due to the permutation invariance of the mixture posterior, we can consider that the posterior of a m-component mixture model is a mixture distribution with m! symmetric components and therefore the object of labeling is to recover one of the components. In order to do labeling, we propose to first fit a sym...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Communications in Statistics - Simulation and Computation
دوره 42 شماره
صفحات -
تاریخ انتشار 2013